Math, asked by shasravi0tadra8nafee, 1 year ago

if q=sin^-1(sin(-600 degree)) then principal value of q is?

Answers

Answered by abhi178
61
we know,

sin^-1(sinx) = x when -π/2≤ x ≤ π/2

here x = -600°

sin(-600°) = -sin(600°)
= -sin(720° -120°)
= sin120°
=sin(180-60°)
=sin(60°)
hence, sin (-600°) = sin(60°) =sin(π/3)

use this

q =sin^-1(sin(π/3))
q =π/3
Answered by pinquancaro
13

Answer:

q=\frac{\pi}{3}

Step-by-step explanation:

Given : If q=\sin^{-1}(\sin(-600^\circ))

To find : The principal value of q is ?

Solution :

q=\sin^{-1}(\sin(-600^\circ))

We can re-write, \sin(-\theta)=-\sin \theta

q=\sin^{-1}(-\sin(600^\circ))

q=\sin^{-1}(-\sin((720-120)^\circ))

q=\sin^{-1}(\sin(120)^\circ)

q=\sin^{-1}(\sin(180-60)^\circ)

q=\sin^{-1}(\sin(60)^\circ)

q=\sin^{-1}(\sin(\frac{\pi}{3}))

Using inverse trigonometry identity, \sin^{-1}\sin x=x

q=\frac{\pi}{3}

Therefore, The principal value of q is q=\frac{\pi}{3}

Similar questions