Math, asked by jigeyaaa, 8 months ago

if qthterm is 1/p and pth term is 1/q then prove that 1+pq/ 2 where, p≠q​

Answers

Answered by Anonymous
21

\;\;\underline{\textbf{\textsf{ Given:-}}}

 \sf p {}^{th}  \: term =  \dfrac{1}{q}

 \sf q {}^{th}  \: term =  \dfrac{1}{p}

\;\;\underline{\textbf{\textsf{ To Prove:-}}}

• The sum of first pq term is S_{pq} = \dfrac{1+pq}{2}

\;\;\underline{\textbf{\textsf{ Solution :-}}}

Let the first term and common difference of the AP be a and d respectively.

Given that,

 \sf p {}^{th}  \: term =  \dfrac{1}{q}  \\  \\  \implies \sf a + (p - 1)d =  \dfrac{1}{q}  \dashrightarrow(1)

Again,

 \sf q {}^{th}  \: term =  \dfrac{1}{p}   \\  \\ \sf  \implies a + (q - 1)d =  \dfrac{1}{p}   \dashrightarrow(2)

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

\underline{\:\textsf{ Subtracting (1) from (2)    :}}

\sf \longrightarrow a + (q-1)d - \{a +(p-1)d \} = \dfrac{1}{p} - \dfrac{1}{q}\\\\ \sf\longrightarrow  (q-1)d - (p-1)d = \dfrac{q - p}{pq} \\\\ \sf \longrightarrow d(q - 1 - p + 1) = \dfrac{q-p}{pq} \\\\ \sf \longrightarrow d(q - p) = \dfrac{q - p}{pq} \\\\ \sf \longrightarrow d = \dfrac{1}{pq}

\underline{\:\textsf{ Now putting the value of d in eq(1)   :}}

\sf\longrightarrow  a + (p - 1)\times\dfrac{1}{pq} = \dfrac{1}{q} \\\\ \sf \longrightarrow a = \dfrac{1}{q} - \dfrac{p-1}{pq} \\\\ \sf \longrightarrow a = \dfrac{p-p+1}{pq} \\\\ \sf\longrightarrow  a = \dfrac{1}{pq}

Here, we have

• First term , a = \dfrac{1}{pq}

• Common difference, d = \dfrac{1}{pq}

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Now, find the sum

\sf S_{pq} = \dfrac{pq}{2}\left\{2\times \dfrac{1}{pq} + (pq-1)\times\dfrac{1}{pq} \right\} \\\\ \sf \longrightarrow S_{pq} = \dfrac{pq}{2}\left\{ \dfrac{2 + pq - 1}{pq} \right\} \\\\ \sf \longrightarrow S_{pq} = \dfrac{pq}{2}\left\{\dfrac{1+pq}{pq} \right\} \\\\ \sf \longrightarrow S_{pq} = \dfrac{1+pq}{2}

\;\;\underline{\textbf{\textsf{ Hence-}}}

( Proved)

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Answered by Anonymous
0

if qthterm is 1/p and pth term is 1/q then prove that 1+pq/ 2 where, p≠qif qthterm is 1/p and pth term is 1/q then prove that 1+pq/ 2 where, p≠q

Similar questions