Math, asked by akileshkannan7876, 2 months ago

If R = 10x²y² z² and errors in x,y, z are 0.03,0.01, 0.02 respectively at x=3, y=1, Z=2. Calculate the absolute errer and percentage errer in evaluating R..

Answers

Answered by piyushkumar2231
1

Answer:

Correct option is

B

6 %

Given, A=

y

q

z

r

x

p

Take ln and then differentiate ,

A

ΔA

=±(p

x

Δx

+q

y

Δy

+r

z

Δz

)

Thus the maximum percentage error in A:

A

ΔA

×100=p

x

Δx

×100+q

y

Δy

×100+r

z

Δz

×100=(3×1)+(2×0.5)+(1×2)=6 %

Answered by vinod04jangid
0

Answer:

Percentage error = 12% and absolute error = 43.2

Step-by-step explanation:

Given :- R = 10x²y²z², error in x, y and z are 0.03, 0.01, 0.02 respectively at x=3, y=1, z=2.

To find :- The absolute error and percentage error in R.

Solution:-

R = 10x²y²z²

The given values are x = 3, y = 1 and z = 2.

∴ R = 10( 3)²( 1² )( 2 )²

      = 10( 9 )( 4 )

      = 360

The given error in x = 0.03 = 3%, y = 0.01 = 1%, z = 0.02 = 2%

ΔR =  2 Δx + 2 Δy + 2 Δz

 R          x          y         z

    = 2(3) + 2(1) + 2(2)

    = 6 + 2 + 4

    = 8 + 4

    = 12 %

Therefore, the percentage error in R = 12%.

So, relative error = 12/100 = 0.12

Absolute error = relative error * exact value

                        = 0.12 × 360

                        = 43.2

#SPJ2

https://brainly.in/textbook-solutions/q-10-i-number-3-625-wrongly-read-1

https://brainly.in/textbook-solutions/q-percentage-error-calculating-surface-area-cubical-box

Similar questions