Physics, asked by Sruthypotter7513, 9 months ago

If R and H represent horizontal range and maximum height of the projectile, then the angle of projection with the horizontal is

Answers

Answered by rishu6845
12

Answer:

 \alpha  =  { \tan  }^{ - 1}  \frac{4h}{ \: r}

Explanation:

Given---> r and h are horizontal range and maximum height of the projectile .

To find -----> Angle of projection

Concept used ----> If angle of projection and initial velocity of projectile be

 \alpha and \: u

then ,

r \:  =  \frac{ {u}^{2} \:  \sin(2 \alpha )  }{g}

and

h \:  =   \frac{ {u}^{2} \:  { \sin }^{2}   \alpha }{2g}

Solution-----> Now we know that ,

r \:  =   \frac{ {u}^{2}  \sin(2 \alpha ) }{g}

h \:  =  \frac{ {u}^{2}  { \sin }^{2} \alpha  }{2g}

now \: dividing \: first \: relation \: by \: second \: one \: we \: get

 \frac{r}{h}  =  \frac{ \frac{ {u}^{2} \:  \sin(2 \alpha )  }{g} }{ \frac{ {u}^{2} \:  { \sin \  }^{2}  \alpha  }{2g} }

 {u}^{2} and \: g \: cancel \: out \: from \: the \: numerator \:and \: denominator

 \frac{r}{h}  =  \frac{2 \:  \sin(2 \alpha ) }{ \ \ { \sin }^{2} \alpha  }

we \: know \: that \:

 \sin(2 \alpha )  = 2 \:  \sin( \alpha )  \cos( \alpha )

applying \: it \: we \: get

 \frac{r}{h}  =  \frac{2 \:  \times 2 \:  \sin \alpha \:  \cos \alpha    }{ \ { \sin }^{2}  \alpha   }

 \sin \alpha  \: cancel \: out \: from \: numerator \: and \: denominator

 \frac{r}{h}  = 4 \:  \cot \alpha

 \cot \alpha   =  \frac{r}{4h}

 \tan \alpha  =  \frac{4h}{r}

so

  \alpha  =  \ { \tan}^{ - 1} ( \:  \frac{4h}{r} )

Similar questions