Physics, asked by madhusingh7033586920, 1 month ago

if r is a position vector of a point the div r is​

Answers

Answered by pulakmath007
0

SOLUTION

GIVEN

 \vec{r} is a position vector

TO DETERMINE

The divergence of  \vec{r}

EVALUATION

The divergence of a continuously Differentiable vector point function

 \vec{F} is denoted by div \vec{F}and defined as

\displaystyle\nabla . \vec{F} = \bigg(\hat{i} \frac{ \partial \vec{F}}{ \partial x} + \hat{j} \frac{ \partial \vec{F}}{ \partial y} + \hat{k} \frac{ \partial \vec{F}}{ \partial z} \bigg)

 Let \:  \:  \vec{r} = x \hat{i} + y \hat{j} + z \hat{k}

Hence the required divergence

\displaystyle = \nabla . \vec{r}

\displaystyle = \bigg(\hat{i} \frac{ \partial \vec{r}}{ \partial x} + \hat{j} \frac{ \partial \vec{r}}{ \partial y} + \hat{k} \frac{ \partial \vec{r}}{ \partial z} \bigg)

\displaystyle = \bigg( \frac{ \partial x}{ \partial x} + \frac{ \partial y}{ \partial y} + \frac{ \partial z}{ \partial z} \bigg)

\displaystyle =1 + 1 + 1

\displaystyle =3

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. write the expression for gradient and divergence

https://brainly.in/question/32412615

2. prove that the curl of the gradient of

(scalar function) is zero

https://brainly.in/question/19412715

Similar questions