Math, asked by NIGHTDREAMER73, 10 months ago

If R={(x, y ):where x and y are whole numbers,x2+y2=169}then domain of R ?

Answers

Answered by Anonymous
17
X+y=17. X2+Y2=169. (17)2= 169+2XY. 289-169=2XY. 120=2XY. XY=60. then x+y=17. XY=60then X=12. Y=5. 3.4. 5 votes. 5 votes ... To find the value of x & y if,. x + y = 17
Answered by payalchatterje
2

Answer:

Required domain of R is {0,5,12,13}.

Step-by-step explanation:

Given,R={(x, y ):where x and y are whole numbers,x2+y2=169}

 {x}^{2}  +  {y}^{2}  = 169

 {y = 169 -  {x}^{2} }

y =  \sqrt{169 -  {x}^{2} }

For x = 0,

y =  \sqrt{169 - 0}  = 13

For x = 1,

y =  \sqrt{169 -  {1}^{2} }  =  \sqrt{168}

For x = 2,

y =  \sqrt{169 -  {2}^{2} }  =  \sqrt{165}

For x = 5,

y =  \sqrt{169 -  {5}^{2} }  =  \sqrt{169 - 25}  =  \sqrt{144}  = 12

For x = 12,

y =  \sqrt{169 -  {12}^{2} }  =  \sqrt{169 - 144}  =  \sqrt{25}  = 5

For x = 13,

y =  \sqrt{169 -  {13}^{2} }  =  \sqrt{169 - 169}  = 0

Forx = 14,

y =  \sqrt{169 -  {14}^{2} }  =  \sqrt{169 - 196}  =  \sqrt{ - 27}

(not define)

So, domain of R is {0,5,12,13}

Similar questions