Math, asked by rudralakhtariya2101, 11 months ago


If radius is increased by 400% then, volume of corresponding sphere is increased by _ %

Answers

Answered by droopy67
0

Answer:

it will increase by 20%

Answered by sanjeevk28012
0

The percentage increase in volume of sphere is 124%

Step-by-step explanation:

Given as :

The initial radius of a sphere = r

The initial volume of sphere = v

The percentage increase in radius = 400%

So, Final radius of sphere = r + 400% of r

i.e                                      R = r + \dfrac{400}{100} × r

Or,                                     R = r + 4 r

Or,                                     R = 5 r

 volume of sphere = \dfrac{4}{3} × π × Radius³

So, volume of sphere for radius r

ie,                            v = \dfrac{4}{3} × π × r³

Or,                          v = A r³                             ( let A = \dfrac{4}{3} × π )

volume of sphere for radius

                               v' = \dfrac{4}{3} × π × (R)³

i.e                             v' = \dfrac{4}{3} × π × (5r)³

Or,                            v' = \dfrac{4}{3} × π × 125 r³

Or,                           v' = 125 A r³

Now,

% increase in volume =  \dfrac{v'-v}{v}  × 100

Or, % increase in volume =  \dfrac{125 Ar^{3} -Ar^{3} }{Ar^{3} }  × 100

Taking  A r³  as common

i.e   % increase in volume = \dfrac{125-1}{1} × 100

∴     % increase in volume = 12400

So, The percentage increase in volume of sphere is 124%

Hence, The percentage increase in volume of sphere is 124%  Answer

Similar questions