Math, asked by anshgovind7, 3 months ago

if ratio of 3 angle of triangle is 3: 4: 2: find all angle of the triangle​

Answers

Answered by ShírIey
41

Given that, The Ratio of three angles of a triangle is 3:4:2.

Need To find: All angles of the triangle.

❍ Let the angles of the triangle are 3x, 4x and 2x respectively.

⠀⠀⠀

\underline{\bf{\dag} \:\mathfrak{As\;we\;know\: that\: :}}⠀⠀⠀⠀

⠀⠀⠀

  • Sum of all angles of the triangle is 180°.

⠀⠀⠀

Therefore,

⠀⠀⠀

:\implies\sf 2x + 3x + 4x = 180^\circ \\\\\\:\implies\sf 9x = 180^\circ \\\\\\:\implies\sf  x = \cancel\dfrac{180}{9}\\\\\\:\implies{\underline{\boxed{\frak{\pink{x = 20^\circ}}}}}\:\bigstar

⠀⠀⠀

Hence,

⠀⠀⠀

  • First angle, 2x = 2(20) = 40°
  • Second angle, 3x = 3(20) = 60°
  • Third angle, 4x = 4(20) = 80°

⠀⠀⠀

\therefore{\underline{\sf{Hence,\; measure\;of\;all\;angles\;are\; \bf{40^\circ,60^\circ\;\&\;80^\circ }\;\sf{respectively}.}}}

⠀⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀⠀

\qquad\quad\boxed{\bf{\mid{\overline{\underline{\pink{\bigstar\: Verification \: :}}}}}\mid}\\\\

⠀⠀⠀

  • As We know that sum of all angles of the triangle is 180°. We've measure of all angles of the triangle. So, let's verify them;

⠀⠀⠀

:\implies\sf a + b + c = 180^\circ \\\\\\:\implies\sf 40^\circ + 60^\circ + 80^\circ = 180^\circ\\\\\\:\implies{\underline{\boxed{\sf{ 180^\circ = 180^\circ}}}}

⠀⠀⠀

\qquad\quad\therefore{\underline{\textsf{\textbf{Hence Verified!}}}}

Answered by Sen0rita
25

Given : Ratio of three angles of a triangle is 3 : 4 : 2.

To Find : All angles of the triangle.

⠀⠀⠀⠀⠀⠀____________________

Put k in the ratio.

 \:  \:

Now, angles are -

 \:

  • First angle = 2k
  • Second angle = 3k
  • Third angle = 4k

 \:  \:

As we know that -

 \:  \:

Sum of all angles of a triangle is 180°.

i.e.

 \:

 \star \: \underline{\boxed{\sf\pink{ \angle1 +  \angle2 +  \angle3 = 180 \degree}}}

 \:  \:

\it{\bold{\underline{According \: to \: the \: question \:  : }}}

 \:  \:

\sf:\implies \: 2k + 3k + 4k = 180 \\  \\  \\ \sf:\implies \: 5k + 4k = 180  \\  \\  \\ \sf:\implies \: 9k = 180 \\  \\  \\ \sf:\implies \: k =   \cancel\frac{180}{9}  \\  \\  \\ \sf:\implies \: \underline{\boxed{\mathfrak\purple{k = 20}}} \:  \bigstar \\  \\  \\  \\  \sf \therefore{ \underline{Value \: of \: k \: is \:  \bold{20}.}}

 \:  \:

 \:  \:

Now, put the value of k in the ratio.

 \:  \:

  • First angle = 2k = 2(20) = 40°
  • Second angle = 3k = 3(20) = 60°
  • Third angle = 4k = 4(20) = 80°

 \:  \:

 \:  \:

 \sf \therefore{ \underline{Hence, \: the \: all \: angles \: of \: the \: triangle \: are \:  \bold{40 \degree} \:  \bold{60 \degree} \: and \:  \bold{80 \degree} \: respectively.}}

Similar questions