if root 11-1/ root 11 + 1 =a-b root 11, then find the value of a and b
Answers
√11-√1/√11+√1=a-B(√11)
LHS
√11-1/√11+1×√11-1/√11-1
(√11-1)²/(√11)²-(1)²
(√11)²+1-2(√11)/11-1
11+1-2(√11)/10
12-2(√11)/10
LHS=RHS
12-2(√11)/10=a-B(√11)
a=12/10;b=2/10
therefore a=6/5;b=1/5
The value of a = 1 and b = 1/5.
The following is a simpler version of the given expression:
root(11) - 1 / root(11) + 1
= (root(11)-1)/(root(11)+1) * (root(11)-1)/(root(11)-1)
= (11 - 2root(11) + 1) / (11 - 1)
= (10 - 2root(11)) / 10
Now we can equate this expression to a - b root(11) and solve for a and b:
(10 - 2root(11)) / 10 = a - b root(11)
Multiplying both sides by 10 and rearranging, we get:
10a - 10b root(11) = 10 - 2root(11)
Now we can equate the coefficients of root(11) and the constant terms on both sides:
10a = 10
-10b = -2
Solving these equations, we get:
a = 1
b = 1/5
Therefore, a = 1 and b = 1/5.
For such more questions on value,
https://brainly.in/question/48714416
#SPJ3