if root 3 tan B = 3sinB,prove that sin^2-cos^2B =1/3
Trigonometry question!
dont spam please
Answers
Answered by
2
Step-by-step explanation:
√3 tan B = 3 SinB
Sin B / Cos B = √3 Sin B
Cos B = 1/√3
then
Sin B =✓1- Cos^2 B
Sin B = √2/√3
then now :
Sin^2 B - Cos^2 B = 2/3 - 1/3 = 1/3
Anjula:
great
Answered by
4
Step-by-step explanation:
solution is-
√3tanB=3sinB
=> √3/3=sinB*cosB/sinB
=>1/√3„= cosB
=>cos^2B=1/3
Using sin square B +cos square B=1
sin^2B=1-cos^2B
sin^2B=1-(1/√3)^2
sin^2B= 1-1/3
sin^2B = 2/3
=> sin^2B-cos^2B=2/3-1/3
=>sin^2B-cos^2B=1/3
=>
Similar questions