Math, asked by sam792, 1 year ago

if root 7 + 1 upon root 7 minus 1 equals to a minus b root 7 then find the value of a and b

Answers

Answered by DaIncredible
2
Hey friend,
Here is the answer you were looking for:
 \frac{ \sqrt{7} + 1 }{ \sqrt{7} - 1 }  = a - b \sqrt{7}  \\  \\ on \: rationalizing \: we \: get \\  \\  =  \frac{ \sqrt{7} + 1 }{ \sqrt{7}  - 1} \times  \frac{ \sqrt{7}  + 1}{ \sqrt{7} + 1 }  \\  \\ using \: the \: identities \\  {(a + b)}^{2}  =  {a}^{2}  +  {b}^{2}  + 2ab \\ (a + b)(a - b) =  {a}^{2}  -  {b}^{2}  \\  \\ we \: get \\  \\  =  \frac{ {( \sqrt{7} )}^{2}  +  {(1)}^{2}  + 2 \times  \sqrt{7} \times 1 }{ {( \sqrt{7}) }^{2} -  {(1)}^{2}  }  \\  \\  =  \frac{7 + 1 + 2 \sqrt{7} }{7 - 1}  \\  \\  =  \frac{8 + 2 \sqrt{7} }{6}  \\  \\  =  \frac{4 +  \sqrt{7} }{6}  \\  \\  \frac{4 +  \sqrt{7} }{6}  = a - b \sqrt{7}  \\  \\ a =  \frac{4}{6}  \\  \\ a =  \frac{2}{3}  \\  \\ b =  -  \frac{1}{6}

Hope this helps!!!!!

@Mahak24

Thanks....
☺☺
Answered by kashishmaheshwari25
2

\frac{ \sqrt{7} + 1 }{ \sqrt{7} - 1 } = a - b \sqrt{7} \\ \\ on \: rationalizing \: we \: get \\ \\ = \frac{ \sqrt{7} + 1 }{ \sqrt{7} - 1} \times \frac{ \sqrt{7} + 1}{ \sqrt{7} + 1 } \\ \\ using \: the \: identities \\ {(a + b)}^{2} = {a}^{2} + {b}^{2} + 2ab \\ (a + b)(a - b) = {a}^{2} - {b}^{2} \\ \\ we \: get \\ \\ = \frac{ {( \sqrt{7} )}^{2} + {(1)}^{2} + 2 \times \sqrt{7} \times 1 }{ {( \sqrt{7}) }^{2} - {(1)}^{2} } \\ \\ = \frac{7 + 1 + 2 \sqrt{7} }{7 - 1} \\ \\ = \frac{8 + 2 \sqrt{7} }{6} \\ \\ = \frac{4 + \sqrt{7} }{6} \\ \\ \frac{4 + \sqrt{7} }{6} = a - b \sqrt{7} \\ \\ a = \frac{4}{6} \\ \\ a = \frac{2}{3} \\ \\ b = - \frac{1}{6}

Similar questions