Math, asked by 0911nidhi, 11 months ago



If root over 13-p root 10 = root8 + root 5 then find p.​

Answers

Answered by Anonymous
6

Solution

 \rm \sqrt{13 - p \sqrt{10} }  =  \sqrt{8}  +  \sqrt{5}

Squaring on both sides

 \implies  \bigg(\sqrt{13 - p \sqrt{10} } \bigg) ^{2}   =  (\sqrt{8}  +  \sqrt{5} )^{2}

 \implies 13 - p \sqrt{10}   =   { (\sqrt{8}) }^{2}  +  {( \sqrt{5} )}^{2}  + 2( \sqrt{8} )( \sqrt{5} )

[ Because (a + b)² = a² + b² + 2ab ]

 \implies 13 - p \sqrt{10}   = 8  +  5  + 2 \sqrt{8  \times 5}

 \implies 13 - p \sqrt{10}   = 8  +  5  + 2 \sqrt{40}

 \implies 13 - p \sqrt{10}   = 8  +  5  + 2 \sqrt{4 \times 10}

 \implies 13 - p \sqrt{10}   = 13  + 4\sqrt{10}

 \implies 13 - 13 - 4 \sqrt{10}   = p \sqrt{10}

 \implies  - 4 \sqrt{10}   = p \sqrt{10}

 \implies   \dfrac{ - 4 \sqrt{10} }{ \sqrt{10} }    = p

 \implies  - 4     = p

 \implies \boxed{p =  - 4}

Hence the value of p is - 4.

Answered by RvChaudharY50
50

Question :----

 \sqrt{13 - p \sqrt{10} }  =  \sqrt{8}  +  \sqrt{5}

Find the value of P ?

Formula used :---

  • (a+b)² = (a² + b² + 2ab)

Solution :----

Squaring both sides of the given Equation we get,

since (√a)² = a ,

in LHS we have = (13 - P√10)

in RHS we have = (√8 + √5)²

so,

13 - P√10 = 8 + 5 + 2√40

→ 13 - P√10 = 13 + 2√(4×10)

→ 13 - P√10 = 13 + 2×2√10

→ 13 - P√10 = 13 + 4√10 .

Comparing here we get, P = (-4)

or we can solve it further , since 13 cancel out both sides ,

we get,

→ (-P√10) = 4√10

(√10) also cancel out now ,

→ (-P) = 4

or,

→ (-1)P = 4

P = (-4) (Ans)

(Hope it helps you)

Similar questions