If root3 tan 2theta+ root 3 tan 3theta + tan 2theta tan 3theta = 1, then find the general value of theta
Answers
Hey Mate,
Your answer is in the attachment, kindly check it from there
MARK AS BRAINLIST
Answer:
Ф = ( n + 1 / 6 ) π / 5 where n € Z
Step-by-step explanation:
Given :
√ 3 tan 2 Ф + √ 3 tan 3 Ф + tan 2 Ф. tan 3 Ф = 1
Rewrite as :
√ 3 tan 2 Ф + √ 3 tan 3 Ф = 1 - tan 2 Ф. tan 3 Ф
Diving by √ 3 both side we get :
√ 3 / √ 3 tan 2 Ф + √ 3 / √ 3 tan 3 Ф = 1 / √ 3 ( 1 - tan 2 Ф. tan 3 Ф )
tan 2 Ф + tan 3 Ф = 1 / √ 3 ( 1 - tan 2 Ф. tan 3 Ф )
( tan 2 Ф + tan 3 Ф ) / ( 1 - tan 2 Ф. tan 3 Ф ) = 1 / √ 3
Now using identity :
tan ( A + B ) = tan A + tan B / 1 - tan A. tan B
tan ( 2 Ф + 3 Ф ) = 1 / √ 3
We know :
tan π / 6 = 1 /√ 3
tan 5 Ф = tan π / 6
On comparing we get :
5 Ф = π / 6
Ф = π / 30
We know for general solution if :
tan Ф = tan α
= > Ф = n π + α where n € Z
So , general solution of given equation is written as :
= > Ф = n π + π / 30
= > Ф = ( n + 1 / 6 ) π / 5 where n € Z