Math, asked by jitender14, 1 year ago

if (root5+root3)/(root5-root3)=a+root15b,find the value of a and b

Answers

Answered by abhi569
327
 \frac{ \sqrt{5} +  \sqrt{3}  }{ \sqrt{5}- \sqrt{3}  } = a+b \sqrt{15}

By Rationalization,

L.H.S,

 \frac{ \sqrt{5} +  \sqrt{3} }{ \sqrt{5} -  \sqrt{3} } × \frac{ \sqrt{5} +  \sqrt{3} }{ \sqrt{5}+  \sqrt{3}  }

____________________________

On Nominator,

by formula, (a+b)^2 =a^2+  b^2+2ab

On Denominator,

by formula, a^2 -b^2 =(a+b)(a-b)
_____________________________________


 \frac{ (\sqrt{5}+  \sqrt{3})^2  }{ (\sqrt{5})^2 - ( \sqrt{3})^2 }

 \frac{5 + 3 + 2 \sqrt{15} }{5-3}

 \frac{8+  2\sqrt{15} }{2}

_____________________________________

Then,

 \frac{8 + 2 \sqrt{15} }{2}  = a+b \sqrt{15}

 \frac{8}{2}  +  \frac{2 \sqrt{15} }{2}  = a+b \sqrt{15}

 4 + \sqrt{15}  = a+b \sqrt{15}

Now,

a =4
b√15 =√15

_______________________

a= 4 

b =1 


i hope this will help you


-by ABHAY


gaurav2013c: Keep Rocking bro :)
abhi569: Thanks bro
abhi569: (-:
Answered by HappiestWriter012
197
Hey there

√5 + √3 / √5 - √3 = a + √15b

Rationalising the denominator ; Multiplying denominator and numerator by √5 + √3

(√5 + √3)² / (√5)²-(√3)² = a + √15b

5 + 3 + 2√15 / 5- 3 = a + √15b

8+2√15 / 2 = a + √15b

4 + √15 = a + √15 b.

So,

Comparing equations,

We get a = 4 , b = 1 .

Hope helped!
Similar questions