Math, asked by Rau789, 1 year ago

If roots of the equation (a²+b²)x²-2(ac+bd)x+(c²+d²)=0 are equal then prove that a/b=c/d

Answers

Answered by Anonymous
4
If roots of the equation (a²+b²)x²-2(ac+bd)x+(c²+d²)=0 are equal then prove that a/b=c/d 


 [-2(ac + bd)]^2 - 4 x (a^2 + b^2) (c^2 + d^2) = 0 

 4[(ac)^2 + 2abcd + (cd)^2] - 4[(ac)^2 + (ad)^2 + (bc)^2 + (cd)^2] = 0 

 [(ac)^2 + 2abcd + (cd)^2] - [(ac)^2 + (ad)^2 + (bc)^2 + (cd)^2] = 0 

⇒ (2abcd - (bc)^2 - (ad)^2) = 0 

 (bc)^2 - 2abcd + (ad)^2 = 0 

 (bc-ad)^2 = 0 

 (bc = ad 

⇒ a/b = c/d

Using the Quadratic Formula

 \frac{x=2(ac+bd)±(−2(ac+bd))2−4(a2+b2)(c2+d2)}{√2(a2+b2) }




Answered by KshithijBK
15

Answer:

Step-by-step explanation:

p(x)=(a²+b²)x²-2(ac+bd)x+(c²+d²)  ⇒ 0

as the roots are equal

     Discriminant ⇒ b²-4ac=0

 

(-2(ac+bd))²-4(a²+b²)(c²+d²)=0

(4(ac+bd)²)-4((ac)²+(ad)²+(bc)²+(bd)²)=0

(2ac)²+8acbd+(2bd)²-(2ac)²-(2ad)²-(2bc)²-(2bd)²=0

                                   (2ad)²+(2bc)²=8acbd

                                   (2ad)²+(2bc)²-8acbd=0

(It is of the form a²+b²-2ab=(a-b)²)

                                             (2ad-2bc)²=0

                                              2ad-2bc=0

                                                      2ad=2bc

       (cancelling 2 on both sides)

                                                        ad=bc

                                                       a/b=c/d

                                                                                             HENCE PROVED

:) Hope this helps!!!!!!!!!!!!!

Similar questions