If roots of the equation (a²+b²)x²-2(ac+bd)x+(c²+d²)=0 are equal then prove that a/b=c/d
Answers
⇒ [-2(ac + bd)]^2 - 4 x (a^2 + b^2) (c^2 + d^2) = 0
⇒ 4[(ac)^2 + 2abcd + (cd)^2] - 4[(ac)^2 + (ad)^2 + (bc)^2 + (cd)^2] = 0
⇒ [(ac)^2 + 2abcd + (cd)^2] - [(ac)^2 + (ad)^2 + (bc)^2 + (cd)^2] = 0
⇒ (2abcd - (bc)^2 - (ad)^2) = 0
⇒ (bc)^2 - 2abcd + (ad)^2 = 0
⇒ (bc-ad)^2 = 0
⇒ (bc = ad
⇒ a/b = c/d
Using the Quadratic Formula
Answer:
Step-by-step explanation:
p(x)=(a²+b²)x²-2(ac+bd)x+(c²+d²) ⇒ 0
as the roots are equal
Discriminant ⇒ b²-4ac=0
(-2(ac+bd))²-4(a²+b²)(c²+d²)=0
(4(ac+bd)²)-4((ac)²+(ad)²+(bc)²+(bd)²)=0
(2ac)²+8acbd+(2bd)²-(2ac)²-(2ad)²-(2bc)²-(2bd)²=0
(2ad)²+(2bc)²=8acbd
(2ad)²+(2bc)²-8acbd=0
(It is of the form a²+b²-2ab=(a-b)²)
(2ad-2bc)²=0
2ad-2bc=0
2ad=2bc
(cancelling 2 on both sides)
ad=bc
a/b=c/d
HENCE PROVED
:) Hope this helps!!!!!!!!!!!!!