Math, asked by mayabarhate, 9 months ago

if rupees 4000 amount to 5290 in 2 years ,find the rate of compund interst​

Answers

Answered by Anonymous
7

\bf{\huge{\boxed{\tt{\pink{ANSWER\::}}}}}

\bf{Given}\begin{cases}\sf{Amount,[A]\:=\:Rs.5290}\\\\ \sf{Principal,[P]\:=\:Rs.4000}\\ \\\sf{Time,[n]\:=\:2\:years}\end{cases}}

\bf{\Large{\underline{\bf{To\:\:find\::}}}}

The rate of compound Interest.

\bf{\Large{\underline{\tt{\red{Explanation\::}}}}}

We know that formula of the compound Interest = Amount - Principal

Or

\leadsto\sf{\green{A\:=\:P(1+\frac{R}{100} )^{n} }}

So,

\longmapsto\sf{5290\:=\:4000(1+\frac{R}{100})^{2}  }

\longmapsto\sf{\frac{529\cancel{0}}{400\cancel{0}} \:=\:(1+\frac{R}{100} )^{2} }

\longmapsto\sf{\frac{529}{400} \:=\:(1+\frac{R}{100} )^{2} }

\longmapsto\sf{\sqrt{\frac{529}{400} } \:=\:(1+\frac{R}{100})}

\longmapsto\sf{\frac{23}{20} \:=\:(1+\frac{R}{100} )}

\longmapsto\sf{\frac{23}{20} -1\:=\:\frac{R}{100} }

\longmapsto\sf{\frac{23\:-\:20}{20} \:=\:\frac{R}{100} }

\longmapsto\sf{\frac{3}{20} \:=\:\frac{R}{100} }

\longmapsto\sf{20R\:=\:300}

\longmapsto\sf{R\:\:=\;\:\cancel{\frac{300}{20} }}

\longmapsto\sf{\red{R\:=\:15\%}}

Thus,

\bf{\Large{\boxed{\rm{The\:rate\:of\:compound\:Interest\:is\:\:15\%}}}}}

Answered by mohitbir4395gm79
0

Answer:

I don't no .............

Similar questions