Math, asked by user09283, 8 months ago

solve this in the form of a+ib:

 \frac{(3 +  \iota \sqrt{5}) (3 -  \iota \sqrt{5} )}{ (\sqrt{3} +  \sqrt{2} \iota) - ( \sqrt{3}  -   \iota \sqrt{2}   )}

Answers

Answered by BrainlyConqueror0901
53

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\therefore{\text{Complex\:number=}}\frac{ - 7 \iota}{ \sqrt{2} }}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{ \underline \bold{Given : }}\\   : \implies\frac{(3 + \iota \sqrt{5}) (3 - \iota \sqrt{5} )}{ (\sqrt{3} + \sqrt{2} \iota) - ( \sqrt{3} - \iota \sqrt{2} )} \\  \\ \red{ \underline \bold{To \: Find : }} \\ :   \implies \frac{(3 + \iota \sqrt{5}) (3 - \iota \sqrt{5} )}{ (\sqrt{3} + \sqrt{2} \iota) - ( \sqrt{3} - \iota \sqrt{2} )} in \: form \: of \: a +  \iota b = ?

• According to given question :

 :  \implies \frac{(3 + \iota \sqrt{5}) (3 - \iota \sqrt{5} )}{ (\sqrt{3} + \sqrt{2} \iota) - ( \sqrt{3} - \iota \sqrt{2} )}   \\ \\: \implies  \frac{ ({3})^{2} -  (\iota \sqrt{5} )^{2}  }{ \sqrt{3} +  \sqrt{2}  \iota -  \sqrt{3}  +  \sqrt{2}   \iota}  \\  \\\bold{\circ  \:  \:  {a}^{2} -  {b}^{2} = (a + b)(a - b)}  \\  \\   : \implies  \frac{9 -  { \iota}^{2}  \times 5}{2 \sqrt{2} \iota }   \\  \\  :  \implies  \frac{9  - ( - 1)  \times 5 }{2 \sqrt{2}  \iota}  \\  \\  \bold{\circ  \: \:    { \iota}^{2}  =  - 1} \\  \\   :  \implies \frac{9 + 5}{2 \sqrt{2} \iota }  \times  \frac{ -  \sqrt{2} \iota }{ -  \sqrt{2}  \iota}  \\ \\   \bold{ \circ \:  \: Rationalising } \\   \\   : \implies  \frac{ - 14 \sqrt{2} \iota }{ - 2 \times 2 { \iota}^{2} }  \\  \\    : \implies  \frac{ - 14 \sqrt{2} \iota }{ - 4 \times ( - 1)}  \\  \\   : \implies  \frac{ - 14 \sqrt{2} \iota }{4}  \\  \\  :  \implies   \frac{ - 7 \iota}{ \sqrt{2} }  \\  \\   \green{\therefore  \text{Complex \: number }= 0 +  \frac{ - 7 \iota}{ \sqrt{2} } } \\  \\   \green{\therefore  \text{Re(z) = 0}} \\  \\  \green{ \therefore  \text{Im(z) =}  \frac{ - 7 \iota}{ \sqrt{2} } }

Answered by Sharad001
66

QuesTion :-

 \star \:  \frac{(3 + \iota \sqrt{5}) (3 - \iota \sqrt{5} )}{ (\sqrt{3} + \sqrt{2} \iota) - ( \sqrt{3} - \iota \sqrt{2} )} \:  \\

Answer :-

\to \boxed{ a +  \iota \: b = 0 +  \frac{( - 7)}{ \sqrt{2} }  \iota }\\  \\  \sf \: here \\    \to \boxed{ a = 0 \:  \:  \: and \:  \:  \: b =  -  \frac{7}{ \sqrt{2} } } \:

Used Identity :-

→ a² - b ² = ( a - b )( a + b )

SoluTion :-

We have ,

 \mapsto  \frac{(3 + \iota \sqrt{5}) (3 - \iota \sqrt{5} )}{ (\sqrt{3} + \sqrt{2} \iota) - ( \sqrt{3} - \iota \sqrt{2} )} \: \\  \\  \mapsto \frac{ {3}^{2} -  {( \iota \sqrt{5}) }^{2}  }{ (\sqrt{3} + \sqrt{2} \iota) - ( \sqrt{3} - \iota \sqrt{2} )} \\  \\  \mapsto \frac{ 9 -  5 { \iota}^{2} }{ (\sqrt{3} + \sqrt{2} \iota) - ( \sqrt{3} - \iota \sqrt{2} )} \\  \\   \because \:  { \iota}^{2}  =  - 1 \\  \\  \mapsto \frac{ 9  +  5  }{ \sqrt{3} + \sqrt{2} \iota -  \sqrt{3}  +  \iota \sqrt{2} } \:  \\  \\  \mapsto \:  \frac{14}{2 \iota \sqrt{2} }  \\  \\  \mapsto \:  \frac{7}{ \iota \sqrt{2} }  \times  \frac{ \iota \sqrt{2} }{ \iota \sqrt{2} }  \\  \\  \mapsto \:  \frac{7 \iota \sqrt{2} }{ {( \iota \sqrt{2} )}^{2} }  \\  \\  \mapsto \:  \frac{7 \iota \sqrt{2} }{2 { \iota}^{2} }  \\  \\ \because \:  { \iota}^{2}  =  - 1 \\  \\  \mapsto \:  \frac{7 \iota \sqrt{2} }{ - 2}  \times   \frac{ \sqrt{2} }{ \sqrt{2} }  \\  \\  \mapsto \:  \frac{7 \iota \times 2}{ - 2 \sqrt{2} }  \\  \\  \mapsto \:  \frac{ - 7 \iota}{ \sqrt{2} }  \:  \sf  \: (imaginary \: number) \\  \\  \rm \: hence \\  \\  \to \boxed{ a +  \iota \: b = 0 +  \frac{( - 7)}{ \sqrt{2} }  \iota }\\  \\  \sf \: here \\    \to \boxed{ a = 0 \: and \: b =  -  \frac{7}{ \sqrt{2} } }

Similar questions