Math, asked by manimanish2004, 1 year ago

If S is the circumcentre and O is the
orthocentre of triangle ABC, then OA+OB+OC =
(A) SO
(B) 2SO
(C) OS
(D) 2OS​

Answers

Answered by abhi178
7

It has given that if S is the circumcentre and O is orthocentre of triangle ABC.

then we have to find OA + OB + OC

we know, centroid divides the distance from the circumcentre to orthocentre in the ratio of 2 : 1.

here,

OA + OB + OC = (A - O) + (B - O) + (C - O)

= (A + B + C) - 3O

= 3[(A + B + C)/3 - O]

= 3[G - O] [we know, centroid , G = (A + B + C)/3 ]

= 3GO ..........(1)

O----------(2)-------- G -----(1)----S

here, OG = 2GS

OS = OG + GS = GO + GO/2 = 3GO/2

⇒2OS = 3GO ..........(2)

from equations (1) and (2) we get,

OA + OB + OC = 2OS

therefore, option (D) is correct choice.

Answered by Anonymous
3

\huge\mathcal{Answer:}

↬Centroid divides the distance frm the circumcentre to the orthocentre in the ratio 2:1

oa + ob + oc = (a - o) + (b - o) + (c - o)

 = (a + b + c) - 30

 = 3 \frac{(a + b + c)}{3 - o}

 = 3(g - o)

centroid = g =  \frac{(a + b + c)}{3}

3go -  -  -  -  -  -  -  -  -  -  -  - (1)

o -  -  - (2) -  -  - g -  - (1) -  - s

og = 2gs

os = og + gs = go +  \frac{go}{2}  =  \frac{3go}{2}

2os = 3go -  - (2)

oa + ob + oc = 2os

Similar questions