If S(n)=i^n+i^-n, where i = V-1 and n is an integer, then the total number of distinct values of s(n)is
Answers
Answered by
2
Answer:
2 Distinct Values
Step-by-step explanation:
If S(n)=i^n+i^-n, where i = V-1 and n is an integer, then the total number of distinct values of s(n)is
i = i => i⁴ᵃ⁺¹ = i
i² = -1 => i⁴ᵃ⁺² = -1
i³ = -i => i⁴ᵃ⁺³ = -i
i⁴ = 1 => i⁴ᵃ = 1
i⁻¹ = 1/i = i/i² = -i => i⁻⁽⁴ᵃ⁺¹⁾ = -i
i⁻² = 1/i² = -1 => i⁻⁽⁴ᵃ⁺²⁾ = -1
i⁻³ = 1/i³ = i => i⁻⁽⁴ᵃ⁺³⁾ = i
i⁻⁴ = 1/i⁴ = 1 => i⁻⁽⁴ᵃ⁾ = 1
n Can be 4a , 4a + a , 4a+2 , 4a + 3
S(n) = S(4a) = i⁴ᵃ + i⁻⁽⁴ᵃ⁾ = 1 + 1 = 2
S(4a+1) = i⁴ᵃ⁺¹ + i⁻⁽⁴ᵃ⁺¹⁾ = i - i = 0
S(4a+2) = i⁴ᵃ⁺² + i⁻⁽⁴ᵃ⁺²⁾ = -1 - 1 = 2
S(4a+3) = i⁴ᵃ⁺³ + i⁻⁽⁴ᵃ⁺³⁾ = -i + i = 0
S(n) would be either 0 or 2
so 2 Distinct Values
Similar questions