if s5+s7=167 or s10=235 then find Ap where sn denotes sum of its first n term
Answers
Answer:
Step-by-step explanation:
sn=n/2(2a+(n-1)d) s10=10/2(2a+9d)
s5+s7=167 s10=235
5/2(2a+4d)+7/2(2a+6d)=210 235/5=2a+9d
5(2a+4d)+7(2a+6d)=210*2 47=2a+9d.........(2)
10a+20d+14a+42d=420
24a+62d=420
12a+31d=210......(1)
from 1 and 2
12a+31d=210
(2a+9d=47)6
12a+54d=282
12a+31d=210 (by changing signs)
23d=72
d=72/23 2a+9d=47
d=3.13 a=47- 28.17/2= 9.145
hence,
AP=9.145,12.275,15.405,...........
Answer:1,6,11,16,.....
Step-by-step explanation:
S10=10/2 (2a+9d)=235
5(2a+9d)=235
10a+45d=235
Dividing whole by 5
2a+9d=47
Multiplying by 6
12a+54d=282 ~ {1}
S5+S7=5/2 [2a+(5-1)d]+ 7/2 [2a+(7-1)d]
5/2 (2a+4d)+ 7/2 (2a+6d)
5 (a+2d)+ 7 (a+3d)=167
5a+10d+7a+21d=167
12a+31d=167~{2}
Subtracting {2} from {1}, we get,
23d=115
D=115/23
D=5
2a +9d = 47
2a+ 9*5=47
2a=49-47
2a=2
A=1
A.P., is 1,6,11,16…