Math, asked by babloo2514, 11 months ago

If S50=S30 in a AP find S50=?

Answers

Answered by MaheswariS
8

Answer:

S_{80}=0

Step-by-step explanation:

Formula used:

The sum of first n terms of an A.P is

\boxed{\bf\:S_n=\frac{n}{2}[2a+(n-1)d]}

Given:

S_{50}=S_{30}

\implies\frac{50}{2}[2a+(50-1)d]=\frac{30}{2}[2a+(30-1)d]

\implies\:25[2a+49d]=15[2a+29d]

\implies\:5[2a+49d]=3[2a+29d]

\implies\:10a+245d=6a+87d

\implies\:4a+158d=0

\implies\:2a+79d=0

\implies\:40[2a+79d]=0

\implies\:\frac{80}{2}[2a+(80-1)d]=0

\implies\:\bf\:S_{80}=0

Answered by lublana
1

S_{80}=0

Step-by-step explanation:

Given: In A.P

S_{50}=S_{30}

Sum of nth terms of an A.P

S_n=\frac{n}{2}(2a+(n-1)d)

Where n=Total number of terms

a=First term of  A.P

d=Common difference

Using the formula

\frac{50}{2}(2a+49d)=\frac{30}{2}(2a+29d)

25(2a+49d)=15(2a+29d)

2a+49d=\frac{15}{25}(2a+29d)

2a+49d=\frac{3}{5}(2a+29d)

10a+245d=6a+87d

10a-6a+245d-87d=0

4a+158d=0

2(2a+79d)=0

2a+79d=0

S_{80}=\frac{80}{2}(2a+79d)

S_{80}=40\times 0=0

#Learn more:

https://brainly.in/question/75002:Answered by Pranavchoudhary

Similar questions