If sec 0 + tan 0 =p, prove that
sin 0 = p^2 -1/p^2+1
Answers
Answered by
1
Step-by-step explanation:
sec + tan = p
Sec = p - tan
sec^2 = (p - tan)^2
sec^2 = p^2 + tan^2 - 2ptan
sec^2 - tan^2 = p^2 - 2ptan
p^2 - 2ptan - 1 = 0
(p^2 - 1)/2p = tan
Sec + (p^2 - 1)/2p = p
Sec = p - (p^2 - 1)/2p = (p^2 + 1 )/2p
Cos = 2p/(p^2+1)
cos^2 = 4p^2/(p^2+1)^2
sin^2 = 1 - 4p^2/(p^2+1)^2
sin^2 =[ (p^2+1)^2 - 4p^2]/(p^2+1)^2
sin^2 = (p^2–1)^2/(p^2+1)^2
Sin = (p^2–1)/(p^2+1)
Similar questions