If sec A=17/15 then find the value of 2 sin A + tan A /2tan A - sin A
Answers
Answer:
33/34
Step-by-step explanation:
secA=hypotenuse/base
by Pythagoras theorem find perpendicular
which will be 8 as 17,15,8 are Pythagorean triplet also
Sin A= 8/17
from given EQ __ 2×8/17 + 8/15 / 2×8/15 - 8/17
which will give 33/34
Concept:
Trigonometric ratios are the ratios of sides of the right-angle triangle.
Given:
sec A = 17 / 15
Find:
We are asked to find the value of (2 sin A + tan A ) / (2tan A - sin A).
Solution:
We have,
sec A = 17 / 15
So,
Now,
Using Trigonometric ratios for SecA, TanA, and SinA.
i.e.
SecA = Hypotenuse / Base = 17 / 15
So,
We have to find out Perpendicular,
Using the Pythagoras theorem,
H² = P² + B²
Now,
Putting values,
17² = P² + 15²
We get,
289 = P² + 225
⇒
P² = 289 - 225
P² = 64
P =8,
Now,
Sin A = Perpendicular / Hypotenuse = 8 /17,
And,
TanA = Perpendicular / Base = 8 / 15,
So,
According to the question,
(2 sin A + tan A ) / (2tan A - sin A)
Now,
Putting values,
i.e.
= ( 2 × 8/17 + 8/15) / ( 2 × 8/15 - 8/17)
= ( 16/17 + 8/15) / ( 16/15 - 8/17)
On simplifying we get,
= [(16 × 15 + 8 × 17)/255} / [(16 × 17 - 8 × 15)/255}
Now,
On simplifying we get,
= (376/255) / (152/255)
We get,
= 376/152
= 2.474
i.e.
(2 sin A + tan A ) / (2tan A - sin A) = 2.474
Hence, the value of (2 sin A + tan A ) / (2tan A - sin A) is 2.474.
#SPJ3