If sec A =17/8 , verify that 3-4sin²A/4cos²A-3=3-tan²A/1-3tan²A
Answers
3-4sin²A / 4cos²A-3 = 3-tan²A / 1-3tan²A proved
Step-by-step explanation:
Given: sec A =17/8
To prove: prove that 3-4sin²A / 4cos²A-3 = 3-tan²A / 1-3tan²A
Solution:
SecA = 17/8 = Hypotenuse / Adjacent
So Opposite = √(17² - 8² = √(289 - 64) = √225 = 15
Now Sin A = opposite / hypotenuse = 15/17
Cos A = Adjacent / Hypotenuse = 8/17
Tan A = Opposite / Adjacent = 15/8
So LHS = 3-4sin²A / 4cos²A-3
= [3 - 4(15/17)²] / [4(8/17)² -3]
= 3 -4(225)/289] / 4(64)/289 - 3
= [3(289) - 4(225)] / 4(64) - 3(289)
= 867 - 900 / 256 - 867
= -33 / -611
= 33/611
RHS = 3-tan²A / 1-3tan²A
= 3 -(15/8)² / 1-3(15/8)²
= 3 - 225/64 / 1 -3(225/64)
= 3(64) - 225 / 64 - 3(225)
= 192 -225 / 64 - 675
= -33 /-611
= 33/611
LHS = RHS
Hence proved.