IF SEC A IS EQUAL TO X+1/4X THEN PROVE SEC A + TAN A IS EQUAL TO 2X OR 1/2X
Answers
Answered by
4
Hope that clears your doubt
CHEERS IF YES! :-)
CHEERS IF YES! :-)
Attachments:
Answered by
1
♧♧HERE IS YOUR ANSWER♧♧
Given that :
secA = x + 1/(4x)
Now, squaring both sides, we get :
sec²A = {x + 1/(4x)}²
=> 1 + tan²A = x² + 2.x.{1/(4x)} + 1/(16x²)
(since sec²A - tan²A = 1)
=> tan²A = x² + 1/2 + 1/(16x²) - 1
=> tan²A = x² - 1/2 + 1/(16x²)
=> tan²A = x² - 2.x.(1/4x) + 1/(16x²)
=> tan²A = {x - 1/(4x)}²
So,
either : tanA = x - 1/(4x)
or : tanA = - {x - 1/(4x)}
Now, when secA = x + 1/(4x) and tanA = x - 1/(4x),
secA + tanA = x + 1/(4x) + x - 1/(4x) = 2x
Again, when secA = x + 1/(4x) and tanA = - {x - 1/(4x)},
secA + tanA = x + 1/(4x) - {x - 1/(4x)}
= 1/(4x) + 1/(4x)
= 1/(2x)
Therefore, secA + tanA = 2x or 1/(2x).
♧♧HOPE THIS HELPS YOU♧♧
Given that :
secA = x + 1/(4x)
Now, squaring both sides, we get :
sec²A = {x + 1/(4x)}²
=> 1 + tan²A = x² + 2.x.{1/(4x)} + 1/(16x²)
(since sec²A - tan²A = 1)
=> tan²A = x² + 1/2 + 1/(16x²) - 1
=> tan²A = x² - 1/2 + 1/(16x²)
=> tan²A = x² - 2.x.(1/4x) + 1/(16x²)
=> tan²A = {x - 1/(4x)}²
So,
either : tanA = x - 1/(4x)
or : tanA = - {x - 1/(4x)}
Now, when secA = x + 1/(4x) and tanA = x - 1/(4x),
secA + tanA = x + 1/(4x) + x - 1/(4x) = 2x
Again, when secA = x + 1/(4x) and tanA = - {x - 1/(4x)},
secA + tanA = x + 1/(4x) - {x - 1/(4x)}
= 1/(4x) + 1/(4x)
= 1/(2x)
Therefore, secA + tanA = 2x or 1/(2x).
♧♧HOPE THIS HELPS YOU♧♧
Similar questions