If sec A-tan A=1/3, find the value of sec A and tan A.
Answers
Answered by
24
we know that
sec^2A - tan^2A = 1
(secA-tanA)(secA+tanA)=1
it is given that secA-tanA=1/3 .......(1)
so secA+tanA=3 .......(2)
adding eqns (1) and (2)
2secA=3+1/3
2secA=10/3
secA=5/3 ans
now putting in eqn (2)
tanA=3-(5/3)
tanA=4/3 ans
sec^2A - tan^2A = 1
(secA-tanA)(secA+tanA)=1
it is given that secA-tanA=1/3 .......(1)
so secA+tanA=3 .......(2)
adding eqns (1) and (2)
2secA=3+1/3
2secA=10/3
secA=5/3 ans
now putting in eqn (2)
tanA=3-(5/3)
tanA=4/3 ans
Answered by
20
It's given that
sec A - tan A = 1/3 (i)
we know that sec² A - tan² A = 1
⇒ (sec A + tan A)(sec A - tan A) =1
⇒ (sec A + tan A)*(1/3) = 1
⇒ (sec A + tan A) = 3 (ii)
solving (i) and (ii)
we get
sec A= 5/3
tan A= 4/3
please mark as brainliest
sec A - tan A = 1/3 (i)
we know that sec² A - tan² A = 1
⇒ (sec A + tan A)(sec A - tan A) =1
⇒ (sec A + tan A)*(1/3) = 1
⇒ (sec A + tan A) = 3 (ii)
solving (i) and (ii)
we get
sec A= 5/3
tan A= 4/3
please mark as brainliest
Similar questions