• If (Sec A + tan A ) (SecB + tanB) (Sec C + tanC) = (Sec A -tanA) (Sec B - tan B) (Sec C - tan C ) . Prove that each of the side is equal to ±1 .
• Best Of Luck !!
• Spammers Stay Away !!
• Quality answer mark as Brainliest !!
Answers
Given
(secA + tanA) (secB + tanB) (secC + tanC) = (secA - tanA) (secB - tanB) (secC - tanC)
Let
(secA + tanA) (secB + tanB) (secC + tanC) = (secA - tanA) (secB - tanB) (secC - tanC) = X
Now
➳ (secA + tanA) (secB + tanB) (secC + tanC) = (secA - tanA) (secB - tanB) (secC - tanC)
☛ Multiple '(secA - tanA) (secB - tanB) (secC - tanC)' on both sides, we get
➳ [(secA + tanA) (secB + tanB) (secC + tanC)] [(secA - tanA) (secB - tanB) (secC - tanC)] = [(secA - tanA) (secB - tanB) (secC - tanC)] [(secA - tanA) (secB - tanB) (secC - tanC)]
➳ (sec²A - tan²A) (sec²B - tan²B) (sec²C - tan²C) = (sec A - tan A)² (sec B - tan B)² (sec C - tan C)²
✰ As we know that, [sec²θ - tan²θ = 1].
➳ 1 × 1 × 1 = (sec A - tan A)² (sec B - tan B)² (sec C - tan C)²
➳ [(sec A - tan A) (sec B - tan B) (sec C - tan C)]² = 1
➳ (sec A - tan A) (sec B - tan B) (sec C - tan C) = √1
➳ (sec A - tan A) (sec B - tan B) (sec C - tan C) = ±1
➳ (sec A - tan A) (sec B - tan B) (sec C - tan C) = X = ±1 ⠀⠀⠀⠀⠀[Given]
➳ (secA + tanA) (secB + tanB) (secC + tanC) = (sec A - tan A) (sec B - tan B) (sec C - tan C) = ±1
∴ L.H.S = R.H.S = ±1⠀⠀[Hence proved]
★GIVEN:-
★TO PROVE:-
- each of the side is equal to ±1
★FORMULA USED:-
★LET:-
- (Sec A + tan A ) (SecB + tanB) (Sec C + tanC)-----(1)
- (Sec A -tanA) (Sec B - tan B) (Sec C - tan C )--------------(2)
★SOLUTION:-
Multiply Eqs (1) and (2) we get,
HENCE, each of the side is equal to ±1