If (sec A+tan A)(secB+tanB)(secC+tanC)=(secA-tanA)(secB-tanB)(secC-tanC), prove that each of the side is equal to ±1.
Answers
Answered by
8
Answer:
Step-by-step explanation:
(secA+tanA)(secB+tanB)(sec C+tanC)=(secA-tanA)(secB-TAnB)(secC-tanC)
multiplying both sides by (SecA-TanA)(secB-TanB)(SecC-tanC)
we get
(secA+tannA)(secB+tanB)(secC+tanC)(secA-tanA)(secB-tanB)(secC-tanC)=(secA-tanA)²(SecB-tanB)²(SecC-tanC)²
⇒(Sec²A-tan²A)(sec²b-tan²B)(sec²c-tan²C)=(secA-tanA)²(SecB-tanB)²(secC-tanC)²
⇒1=[(secA-tanA)(secB-tanB)(secC-tanC)]²
⇒(secA-tanA)(SecB-tanB)(secC-tanC)=+/-1
Similarly multiplying both sides by(secA+tanA)(seB+tanB)(secC+tanC) we get (SecA+tanA)(SecB+tanB)(SecC+tanC)=+/-1
GokulAchu:
did you understand:)
Answered by
7
Answer:
hope that you thank mark brainlist and follow me
Attachments:
Similar questions
Social Sciences,
7 months ago
Math,
7 months ago
English,
7 months ago
Chemistry,
1 year ago
History,
1 year ago