If sec alpha + tan alpha = x then the possible value of sin alpha is
a.1/2(x + 1/x)
b.1/2(x - 1/x)
c.(x*2 - 1)/(x*2 + 1)
d.Can't be determined
Answers
Answer:
none of these
Step-by-step explanation:
Given
secα + tanα =x → Eq1
sec²α - tan²α = 1 -it is a trigonometric identity
(secα + tanα) (secα - tanα) =1 : identity : a²-b² = (a+b)(a-b)
x (secα - tanα) = 1
secα - tanα = 1/x →Eq 2
→Adding eq1 and 2 we get,
2secα = x + 1/x
secα= 1/2 ( x + 1/x) → Eq3
→ Subtracting Eq 1 and 2, we get
2tanα = x - 1/x
tanα = 1/2 (x -1/x)
sinα/cosα = 1/2(x -1/x) tanx = sinx/cosx
sinα × secα = 1/2(x - 1/x)
sinα [ 1/2(x + 1/x) ] = 1/2 ( x - 1/x)
sinα = (x - 1/x) / (x +1/x)
sinα = [(x² - 1)/x] / [(x²+ 1)/x]