If sec @ - tane = 5 and
coseco - coto=3 then
(sec 0+tan 8) (cosec 0 + cot 0)
Answers
Answered by
1
Step-by-step explanation:
Putting the values of perpendicular side (BC) and hypotenuse (AC) and for the base side as (AB), we get
⇒ 32 = AB2 + 22
AB2 = 32 – 22
AB2 = 9 – 4
AB2 = 5
AB = √5
Hence, Base = √5
By definition,
cos A = Base/Hypotenuse
⇒ cos A = √5/3
Since, cosec A = 1/sin A = Hypotenuse/Perpendicular
⇒ cosec A = 3/2
And, sec A = Hypotenuse/Base
⇒ sec A = 3/√5
And, tan A = Perpendicular/Base
⇒ tan A = 2/√5
And, cot A = 1/ tan A = Base/Perpendicular
⇒ cot A = √5/2
Similar questions