Math, asked by RadheshRajan, 9 months ago

if sec∅ +tan∅ =1 then one of the roots of the equation a(b-c)x^2 + b(c-a)x +c(a-b) is​

Answers

Answered by rdevika662
0

Answer:

D=b^2-4ac is the roots formula

then substitute D =[b(c-a)]^2-4a(b-c)c(a-b)

=b^2(c-a)^2-4ac(b-c)(a-b)

D=(2ac-bc-ab)^2

X=-b(c-a)_+(2ac-bc-ab)/2a(b-c)

with +; X=c(a-b)/a(b-c)

with -; X= 1 substitute in the trigonometry equation

Similar questions