if sec∅ +tan∅ =1 then one of the roots of the equation a(b-c)x^2 + b(c-a)x +c(a-b) is
Answers
Answered by
0
Answer:
D=b^2-4ac is the roots formula
then substitute D =[b(c-a)]^2-4a(b-c)c(a-b)
=b^2(c-a)^2-4ac(b-c)(a-b)
D=(2ac-bc-ab)^2
X=-b(c-a)_+(2ac-bc-ab)/2a(b-c)
with +; X=c(a-b)/a(b-c)
with -; X= 1 substitute in the trigonometry equation
Similar questions