If sec θ + tan θ = 5, find the quadrant in which θ lies and find the value of sin θ.
Answers
Answered by
2
Answer:
sinθ = 12/13
Step-by-step explanation:
Given:
sec θ + tan θ = 5
(1/cos θ) + (sinθ /cos θ) = 5
(1+sinθ)/ cos θ = 5
Squaring on both sides
(1+sinθ )²/ cos²θ = 25
(1+sinθ )²/ 1 - sin²θ = 25
(1+sinθ )(1+sinθ ) / (1 - sinθ)(1+sinθ)=25
(1+sinθ ) / (1 - sinθ)=25
1+sinθ = 25(1-sinθ )
26 sinθ = 24
13 sinθ = 12
sinθ = 12/13
Answered by
3
HELLO DEAR,
GIVEN:- sec θ + tan θ = 5
1/cosθ + sinθ/cosθ = 5
=> (1 + sinθ)/cosθ = 5
=> (1 + sinθ) = 5cosθ
[on squaring both side]
we get,
=> (1 + sinθ)²/cos²θ = 25
=> (1 + sinθ)(1 + sinθ)/(1 - sinθ)(1 + cosθ) = 25
=> (1 + sinθ)/(1 - sinθ) = 25
=> 1 + sinθ = 25 - 25sinθ
=> 26sinθ = 24
=> sinθ = 24/26 = 12/13
I HOPE IT'S HELP YOU DEAR,
THANKS
GIVEN:- sec θ + tan θ = 5
1/cosθ + sinθ/cosθ = 5
=> (1 + sinθ)/cosθ = 5
=> (1 + sinθ) = 5cosθ
[on squaring both side]
we get,
=> (1 + sinθ)²/cos²θ = 25
=> (1 + sinθ)(1 + sinθ)/(1 - sinθ)(1 + cosθ) = 25
=> (1 + sinθ)/(1 - sinθ) = 25
=> 1 + sinθ = 25 - 25sinθ
=> 26sinθ = 24
=> sinθ = 24/26 = 12/13
I HOPE IT'S HELP YOU DEAR,
THANKS
Similar questions