Math, asked by jaikumar8273, 1 year ago

If sin α + cosec α = 2, find the value of sinⁿα + cosecⁿα, n ∈ Z.

Answers

Answered by abhi178
20
given, sin\alpha+cosec\alpha=2

we know, cosecant=\frac{1}{sine}

then,
sin\alpha+\frac{1}{sin\alpha}=2\\\\sin^2\alpha+1=2sin\alpha\\\\sin^2\alpha-2sin\alpha+1=0\\\\sin\alpha=1

\because sin\alpha=1\\\\\therefore cosec\alpha=1

now, sin^n\alpha+cosec^n\alpha=1^n+1^n=2

hence, sinⁿα + cosecⁿα = 2
Answered by rohitkumargupta
13
HELLO DEAR,



GIVEN:- sinα + cosecα = 2

=> sinα + 1/sinα = 2

=> sin²α + 1 = 2sinα

=> sin²α - 2sinα + 1 = 0

=> (sinα - 1)² = 0

=> sinα = 1

therefore, cosecα = 1


thus,
sinⁿα + cosecⁿα = 1ⁿ + 1ⁿ = 2 [n ∈ Z]


I HOPE IT'S HELP YOU DEAR,
THANKS
Similar questions