if sec θ+tan θ=p,prove that
sin θ=p²-1/ p²+1.
Answers
Answered by
5
Given:- secθ + tanθ = p........(1)
Sol:- sec²θ - tan²θ = 1
⇒(secθ-tanθ)(secθ+tanθ) = 1
⇒p(secθ-tanθ) = 1
⇒secθ-tanθ = 1/p.......(2)
∴(1)+(2) ⇒ secθ + tanθ + secθ - tanθ = p + 1/p
⇒2secθ = p²+1/p
⇒secθ = p²+1/2p
∴cosθ = 2p/p²+1 (∵cosθ = 1/sinθ)
∴(1)-(2) ⇒ secθ + tanθ - secθ + tanθ = p - 1/p
⇒2tanθ = p-1/p
⇒tanθ = p²-1/2p
∴sinθ = cosθ . tanθ
⇒sinθ = 2p/p²+1 . p²-1/2p
⇒sinθ = p²-1/p²+1 ∴Hence Proved
Answered by
3
Hey dear friend,
perfectly fine pure correct answer
hope it helps you mark me as brainliest and follow me
perfectly fine pure correct answer
hope it helps you mark me as brainliest and follow me
Attachments:
conjureroman:
see my answer and Mark me as brainliest and follow me
Similar questions