If secθ+tanθ=p, then find the value of secθ
Answers
Answered by
4
sec∅ + tan∅ = P ----------(1)
we know ,
sec²∅ - tan²∅ = 1
( sec∅ -tan∅)(sec∅+ tan∅) = P
sec∅ - tan∅ = 1/P ------------(2)
solve equations (1) and (2)
2sec∅ = P + 1/P = ( P² + 1)/P
sec∅ = (P² + 1)/2P
we know ,
sec²∅ - tan²∅ = 1
( sec∅ -tan∅)(sec∅+ tan∅) = P
sec∅ - tan∅ = 1/P ------------(2)
solve equations (1) and (2)
2sec∅ = P + 1/P = ( P² + 1)/P
sec∅ = (P² + 1)/2P
Answered by
0
secthita + tanthita=p
secthita =p-tanthita
=p- Sinthita/costhita
pcosthita-sinthita/costhita
secthita =p-tanthita
=p- Sinthita/costhita
pcosthita-sinthita/costhita
Similar questions