If sec θ + tan θ = p , then show that sin θ= p²-1/p²+1
Answers
Answered by
12
sec^2-tan^2=1 let teta be x
given
secx+tanx=p...................(1)
(secx+tanx)(secx-tanx)=1
p(secx-tanx)=1
secx-tanx=1/p...................(2)
add eq(1) and eq(2)
we will get
secx=p^2+1/p
subtract eq(1) and eq(2)
we will get
tanx=p^2-1/p
we know that
tanx/secx=sinx
then
p^2-1/p/p^2+1/p=sinx
therefore
p^2-1/p^2+1=sinx
hence proved
given
secx+tanx=p...................(1)
(secx+tanx)(secx-tanx)=1
p(secx-tanx)=1
secx-tanx=1/p...................(2)
add eq(1) and eq(2)
we will get
secx=p^2+1/p
subtract eq(1) and eq(2)
we will get
tanx=p^2-1/p
we know that
tanx/secx=sinx
then
p^2-1/p/p^2+1/p=sinx
therefore
p^2-1/p^2+1=sinx
hence proved
shadabaalam:
While adding (1) & (2), the result becomes 2secx=(p^2+1)/p; anyways it doesn't affect the solution.
Answered by
4
⬆️
❤HOPE. ... THIS ....HELPS YOU.....❤
Attachments:
Similar questions
Science,
8 months ago
Math,
8 months ago
Physics,
1 year ago
Physics,
1 year ago
Social Sciences,
1 year ago