Math, asked by shm, 1 year ago

If sec θ + tan θ  = p , then show that sin θ= p²-1/p²+1
                                                       

Answers

Answered by raoatchut191
12
sec^2-tan^2=1                 let teta be x
given 
secx+tanx=p...................(1)
(secx+tanx)(secx-tanx)=1
p(secx-tanx)=1
secx-tanx=1/p...................(2)
add eq(1) and eq(2)
we will get 
secx=p^2+1/p
subtract eq(1) and eq(2)
we will get
tanx=p^2-1/p
we know that 
tanx/secx=sinx
then
p^2-1/p/p^2+1/p=sinx
therefore
p^2-1/p^2+1=sinx
hence proved


shadabaalam: While adding (1) & (2), the result becomes 2secx=(p^2+1)/p; anyways it doesn't affect the solution.
raoatchut191: in the place of /p write /2p
raoatchut191: im telling u bcause i cant edit it now
shadabaalam: yes yes, i already did that, i only wrote it to let know to others, who copy and paste the solution..
raoatchut191: huh copy and paste where
Answered by Anonymous
4

⬆️

HOPE. ... THIS ....HELPS YOU.....

Attachments:
Similar questions