Math, asked by zainabbegum7861, 11 months ago

if sec theta is equals to m+n divided by 2 root mn find sin theta​

Answers

Answered by 9454619
1

Answer:

74784

75858

8594

74884

85858

Answered by harendrachoubay
3

\sin \theta =\dfrac{m-n}{m+n}}

Step-by-step explanation:

We have,

\sec \theta=\dfrac{m+n}{2\sqrt{mn}}

To find, the value of \sin \theta = ?

\sec \theta=\dfrac{m+n}{2\sqrt{mn}}

We know that,

The trigonometric identity,

\sec \theta=\dfrac{h}{b}

∴ Base (b) = 2\sqrt{mn}  and hypotenuse (h) = m + n

By Pythagoras theorem,

Perpendicular, p=\sqrt{h^{2}-b^{2}}

p = \sqrt{(m + n)^{2}-(2\sqrt{mn})^{2}}

= \sqrt{(m + n)^{2}-4mn}

= \sqrt{(m - n)^{2}}

= m - n

Using the algebraic identity,

(a-b)^{2}=(a+b)^{2}-4ab

Perpendicular, p = m - n

\sin \theta=\dfrac{p}{h}

=\dfrac{m-n}{m+n}}

Thus, \sin \theta =\dfrac{m-n}{m+n}}

Similar questions