Math, asked by rehananadeem143, 11 months ago

if sec theta =m+n /2 root mn,find sin theta​

Answers

Answered by mamathakunchala
6

Answer:

m-n÷2√mn

Step-by-step explanation:

sec theta =m+n÷2√mn

  1. according to pythagorus theorem
  2. sec theta =hypotenuse ÷ adjacent
  3. xsquare +4mn=msquare +nsquare +2mn
  4. xsquare =msquare+n square+2 mn-4mn
  5. xsquare= (m-n) whole square
  6. square root on both sides
  7. x=(m-n)
Answered by harendrachoubay
5

The value of \sin \theta=\dfrac{m-n}{m+n}.

Step-by-step explanation:

We have,

\sec \theta=\dfrac{m+n}{2\sqrt{mn}}

To find, the value of \sin \theta=?

\sec \theta=\dfrac{m+n}{2\sqrt{mn}}

\sec \theta=\dfrac{m+n}{2\sqrt{mn}}=\dfrac{h}{b}

Where, h = hypotaneous, b = base

By Pyhtagoras Theorem,

Perperdicular, p=\sqrt{h^{2}-b^{2}}

=\sqrt{(m+n)^{2}-(2\sqrt{mn})^{2}}

=\sqrt{(m+n)^{2}-4mn}

=\sqrt{(m-n)^{2}}

= m - n

\sin \theta=\dfrac{p}{h}

=\dfrac{m-n}{m+n}

Thus, the value of \sin \theta=\dfrac{m-n}{m+n}.

Similar questions