If sec theta minus tan theta is equal to 4,then find the value of cosec theta.
Answers
Answered by
4
Sec theta - tan theta = 4
(1-Sin theta)/Cos theta = 4
Multiply and divide by (1+Sin theta)
Thus
1-Sin^2 theta / Cos theta (1+Sin the ta) = 4
Cos^2 theta/Cos theta(1+Sin theta) = 4
Cos theta/ (1+Sin theta) = 4
Root (1-Sin^2 theta) / 1+Sin theta = 4
Squaring both Sides
1-Sin^2 theta / (1+Sin theta)^2 = 16
(1-Sin theta)(1+Sin theta) / (1+Sin theta)^2 = 16
1-Sin theta / 1+Sin theta = 16
1-Sin theta = 16 + 16 Sin theta
17 Sin theta = -15
Sin theta = -15/17
Thus Cosec theta = -17/15
(1-Sin theta)/Cos theta = 4
Multiply and divide by (1+Sin theta)
Thus
1-Sin^2 theta / Cos theta (1+Sin the ta) = 4
Cos^2 theta/Cos theta(1+Sin theta) = 4
Cos theta/ (1+Sin theta) = 4
Root (1-Sin^2 theta) / 1+Sin theta = 4
Squaring both Sides
1-Sin^2 theta / (1+Sin theta)^2 = 16
(1-Sin theta)(1+Sin theta) / (1+Sin theta)^2 = 16
1-Sin theta / 1+Sin theta = 16
1-Sin theta = 16 + 16 Sin theta
17 Sin theta = -15
Sin theta = -15/17
Thus Cosec theta = -17/15
Answered by
1
Given SecФ - Tan Ф = 4 ----(1)
Multiply both sides by SecФ + TanФ to get:
Sec²Ф - Tan²Ф = 4 (SecФ + TanФ)
=> SecФ + TanФ = 1/4 ---- (2)
From (1) & (2), SecФ = 17/8 and Tan Ф = -15/8
So SinФ = - 15/17
=> CosecФ = - 17/15 negative real number.
Multiply both sides by SecФ + TanФ to get:
Sec²Ф - Tan²Ф = 4 (SecФ + TanФ)
=> SecФ + TanФ = 1/4 ---- (2)
From (1) & (2), SecФ = 17/8 and Tan Ф = -15/8
So SinФ = - 15/17
=> CosecФ = - 17/15 negative real number.
Similar questions