Math, asked by ranjeetagyanvi, 1 year ago

if sec theta = p+1/4p then find the value of sec theta +tan theta

Answers

Answered by INVICTUS7
8
1 +  tan^{2} x = sec ^{2} x

tan x = √sec ^{2} x - 1 
   
         = √(p+ 1/4p)² - 1
         
         = p + 1/4p - 1
   
          
Thus,
   
   sec x + tan x =  p + 1/4p + p + 1/4p - 1

                         = 2p + 1/2p - 1
Answered by pinquancaro
7

Answer:

\sec\theta+\tan\theta=2p

Step-by-step explanation:

Given : \sec\theta=p+\frac{1}{4p}

To find : The value of \sec\theta+\tan\theta ?

Solution :

Write the expression as,

\sec\theta+\tan\theta=\sec\theta+\sqrt{\sec^2\theta-1}

Substitute, \sec\theta=p+\frac{1}{4p}

\sec\theta+\tan\theta=(p+\frac{1}{4p})+\sqrt{(p+\frac{1}{4p})^2-1}

\sec\theta+\tan\theta=(p+\frac{1}{4p})+\sqrt{(p+\frac{1}{4p})^2-4\times p\times \frac{1}{p}}

We know, (a+b)^2-4ab=(a-b)^2

\sec\theta+\tan\theta=(p+\frac{1}{4p})+\sqrt{(p-\frac{1}{4p})^2}

\sec\theta+\tan\theta=(p+\frac{1}{4p})+(p-\frac{1}{4p})

\sec\theta+\tan\theta=2p

Similar questions