Math, asked by ZiahPrincess5357, 1 year ago

If sec theta+tan+=p that find the value of case theta

Answers

Answered by arc555
0

Given,

sec \: θ + tan \: θ = p

 \frac{1}{cos \:  \: θ}  +  \frac{sinθ \: }{cos θ } = p

1 +  \sinθ = p.cos \: θ

Since,

cosθ =  \sqrt{1 -  {sin}^{2}  \: θ}

 =  > 1 - sin \: θ = p. \sqrt{1 -  {sin \:  \:  ^{2} }

Squaring both sides; We get

( {1 + sin})^{2}  =  {p}^{2} .( {1 - sin}^{2} )

 =  > 1 +  {sin}^{2}  + 2sin =  {p}^{2}  -  {p}^{2}  {sin}^{2}

 =  > (1 +  {p}^{2} ) {sin}^{2}  + 2sin + (1 -  {p}^{2} ) = 0

From , Quadratic formula.We have

D =  {b}^{2}  - 4ac

 =  > D = 4 - 4(1 +  {p}^{2} )(1 -  {p}^{2} )

 =  > D = 4 {p}^{4}

 =  > sin =   \frac{ - 2 +  \sqrt{4 {p}^{4} } }{2(1 +  {p}^{2} } ) \:  \: or \frac{ - 2 -  \sqrt{4 {p}^{4} } }{2(1 +  {p}^{2}) }

 =  > sin =  \frac{ {p}^{2}   + 1}{ {p}^{2} - 1 }   \:  \: or \:  \:  \:  - 1

Similar questions