if sec theta+ tan theta+1=0, then find the value of sec theta-tan theta.
Answers
Answered by
1
Answer:
sec a - tan a = (1/(sec a + tan a)) - 1
Step-by-step explanation:
let theta = a
sec a + tan a + sec^(2) a - tan^(2) a = 1
as sec^(2) a - tan^(2) a = 1
sec^(2) a - tan^(2) a = 1 - (sec a + tan a)
(sec a + tan a) × (sec a - tan a) = 1 - (sec a + tan a)
sec a - tan a = (1 - (sec a + tan a))/(sec a + tan a)
sec a - tan a = (1/(sec a + tan a)) - 1
Similar questions