Math, asked by Hemamalini15, 1 year ago

If sec theta - tan theta=√3-2,
show that 1-sin theta/1+sin theta=7-4√3.Pls.give me crct answer ☺

Answers

Answered by Anonymous
30
I hope this will help you.......☺️☺️☺️
All the best!!!
Attachments:
Answered by pinquancaro
5

Answer and Explanation:

Given : \sec \theta - \tan \theta=\sqrt{3}-2

To show : \frac{1-\sin\theta}{1+\sin\theta}=7-4\sqrt3

Solution :

Taking LHS,

LHS=\frac{1-\sin\theta}{1+\sin\theta}

Multiply and divide by 1-\sin\theta

=\frac{1-\sin\theta}{1+\sin\theta}\times \frac{1-\sin\theta}{1-\sin\theta}

=\frac{(1-\sin\theta)^2}{1^2-\sin^2\theta}

=\frac{1-2\sin\theta+sin^2\theta}{\cos^2\theta}

=\frac{1}{\cos^2\theta}-\frac{2\sin\theta}{\cos^2\theta}+\frac{sin^2\theta}{\cos^2\theta}

=sec^2\theta-2\sec\theta\tan^2\theta+tan^2\theta

=(sec\theta-tan\theta)^2

We know,  \sec \theta - \tan \theta=\sqrt{3}-2 substitute

=(\sqrt{3}-2)^2

=\sqrt{3}^2+2^2-2\times 2\times\sqrt3

=3+4-4\sqrt3

=7-4\sqrt3

=RHS

Hence proved.

Similar questions