if sec theta + tan theta + p by q then sin theta =
Answers
Step-by-step explanation:
Let theta =@
sec@ + tan@=p------------------(1)
we know ,
sec^2@-tan^2@=1
(sec@-tan@)(sec@+tan@)=1
hence ,
sec@-tan@=1/p -----------------(2)
now equation (1)and (2)
2sec@=p+1/p=(p^2+1)/p
sec@=(p^2+1)/2p
hence,
cos@=2p/(1+p^2)
hence ,
sin@=(1-p^2)/(1+p^2)
Answer:-
Given:
Sec A + tan A = p/q -- equation (1)
We know that,
Sec² ∅ - tan² ∅ = 1
→ (Sec A + tan A)(Sec A - tan A) = 1
[Since, a² - b² = (a + b)(a - b)].
Putting sec A + tan A as p/q we get,
→ (Sec A - tan A)(p/q) = 1
→ Sec A - tan A = q/p -- equation (2)
Add equations (1) & (2) we get,
→ Sec A + tan A + Sec A - tan A = p/q + q/p
→ 2Sec A = (p + q)/pq
→ Sec A = (p + q)/2pq -- equation (3)
Substitute the value of "Sec A" in equation (1)
→ Sec A + tan A = p/q
→ tan A = p/q - (p + q)/2pq
→ tan A = (2p² - p - q)/2pq -- equation (4)
Dividing equation (4) by (3) we get,
Putting the value of tan A as Sin A/Cos A and Sec A as 1/Cos A we get,