Math, asked by lionsdj4772, 1 year ago

If sec theta + tan theta = P, obtain the values of sec theta, tan theta and sin theta in terms of P

Answers

Answered by nazir8673p3700j
4
hope it will be right
Attachments:
Answered by Tomboyish44
28

According to the question,

⇒ secθ + tanθ = p

We are asked to find the values of secθ, tanθ and sinθ in terms of p.

\Longrightarrow \sf p = sec\theta + tan\theta

We know that:

⇒ sec²θ = tan²θ + 1

secθ = √(tan²θ + 1)

Substitute this in p.

\Longrightarrow \sf p = \sqrt{tan^2\theta + 1} + tan\theta

\Longrightarrow \sf p - tan\theta = \sqrt{tan^2\theta + 1}

Square on both sides.

\Longrightarrow \sf \Big[p - tan\theta\Big]^{2} = \Big[\sqrt{tan^2\theta + 1}\Big]^2

\Longrightarrow \sf p^2 + tan^2\theta - 2(p)(tan\theta) = tan^2\theta + 1

\Longrightarrow \sf p^2 + tan^2\theta - 2ptan\theta = tan^2\theta + 1

\Longrightarrow \sf p^2 - 2ptan\theta = 1

\Longrightarrow \sf p^2 - 1 = 2ptan\theta

\Longrightarrow \sf tan\theta = \dfrac{p^{2} - 1}{2p}

We know that,

⇒ tanθ = opp side/adj side

Opposite side = p² - 1

Adjacent side = 2p

Using Pythogoras Theorem:

⇒ Hypotenuse² = Altitude² + Base²

⇒ Hypotenuse² = (p² - 1)² + (2p)²

⇒ H² = p⁴ + 1 - 2(p²)(1) + 4p²

⇒ H² = p⁴ + 1 - 2p² + 4p²

⇒ H² = p⁴ + 1 + 2p²

⇒ H = √[p⁴ + 1 + 2p²]

⇒ H = √[(p² + 1)²]

H = p² + 1

Now,

\Longrightarrow \sf sec\theta = \dfrac{Hypotenuse}{Adjacent \ Side}

\Longrightarrow \boxed{\sf sec\theta = \dfrac{p^2 + 1}{2p}}

\Longrightarrow \sf tan\theta = \dfrac{Opposite \ Side}{Adjacent \ Side}

\Longrightarrow \boxed{\sf tan\theta = \dfrac{p^2 - 1}{2p}}

\Longrightarrow \sf sin\theta = \dfrac{Opposite \ Side}{Hypotenuse}

\Longrightarrow \boxed{\sf sin\theta = \dfrac{p^{2} - 1}{p^2 + 1}}

Hence solved.

Attachments:
Similar questions