If sec theta + tan theta = P, obtain the values of sec theta, tan theta and sin theta in terms of P
Answers
Answered by
4
hope it will be right
Attachments:
Answered by
28
According to the question,
⇒ secθ + tanθ = p
We are asked to find the values of secθ, tanθ and sinθ in terms of p.
We know that:
⇒ sec²θ = tan²θ + 1
⇒ secθ = √(tan²θ + 1)
Substitute this in p.
Square on both sides.
We know that,
⇒ tanθ = opp side/adj side
⇒ Opposite side = p² - 1
⇒ Adjacent side = 2p
Using Pythogoras Theorem:
⇒ Hypotenuse² = Altitude² + Base²
⇒ Hypotenuse² = (p² - 1)² + (2p)²
⇒ H² = p⁴ + 1 - 2(p²)(1) + 4p²
⇒ H² = p⁴ + 1 - 2p² + 4p²
⇒ H² = p⁴ + 1 + 2p²
⇒ H = √[p⁴ + 1 + 2p²]
⇒ H = √[(p² + 1)²]
⇒ H = p² + 1
Now,
Hence solved.
Attachments:
Similar questions