Math, asked by rams4237, 1 year ago

if sec theta+tan theta =p ,prove that cos square theta
= (p square- 1) / (p square + 1)

Answers

Answered by Anonymous
17

\huge{\underline{\underline{\sf{Answer}}}}

Given that sec∅ + tan∅ = p.........(1)

To prove:

 \sf{sin \theta \:  =  \frac{p {}^{2} - 1 }{p {}^{2}   + 1} }  \\

Here,

 \sf{ \frac{1}{p} =  \frac{1}{sec \theta \:  -  \: tan \theta}  } \\  \\  \implies \:  \sf{ \frac{1}{p} =  \frac{sec \theta \:  - tan \theta}{sec {}^{2}  \theta \:  -  \: tan {}^{2} \theta } } \\  \\  \sf{since \:  \: sec {}^{2}x - tan {}^{2}x = 1  } \\  \\  \implies \:   \boxed{\sf{ \frac{1}{p}  = sec \theta \:  - tan \theta}}.........(2)

Subtracting equations (1) and (2),

 \sf{p -  \frac{1}{p} =  (sec \theta + tan \theta) - (sec \theta \:  - tan \theta) } \\  \\  \rightarrow \:  \boxed{ \sf{ \frac{p {}^{2}  - 1}{p}  = 2tan \theta}}........(3)

Adding equations (1) and (2),we get:

 \sf{p +  \frac{1}{p} = (sec \theta  +   \cancel{tan \theta}) + (sec \theta \:  -  \cancel{tan \theta}) } \\  \\  \rightarrow \:  \boxed{ \sf{ \frac{p {}^{2}  + 1}{p}  = 2sec \theta}}...........(4)

Dividing equations (3) and (4),we get:

 \implies \:  \sf{ \frac{p {}^{2} - 1 }{p {}^{2} + 1 } =  \frac{2tan \theta}{2sec \theta}  } \\  \\   \sf{sin \theta =  \frac{tan \theta}{sec \theta}}  \\   \\ \ \implies \:  \underline{\underline{\boxed{\sf{ \frac{p {}^{2} - 1 }{p {}^{2} + 1 }  = sin \theta}}}}

Hence,proved

Answered by Anonymous
31

Correct Question :

If secØ + tanØ =p, prove that sinØ = (p² - 1)/(p² + 1)

Solution :

\implies\:sec\theta\:+\:tan\theta\:=\:p ____ (eq 1)

We know that..

→ sec²Ø - tan²Ø = 1

So,

\implies\:(sec\theta\:-\:tan\theta)(sec\theta\:+\:tan\theta)\:=\:1

But secØ + tanØ = p

\implies\:p\:(sec\theta\:-\:tan\theta)\:=\:1

\implies\:sec\theta\:-\:tan\theta\:=\:\dfrac{1}{p}

\implies\:sec\theta\:-\:tan\theta\:=\:\dfrac{1}{p} ____ (eq 2)

Now, add (eq 1) and (eq 2)

\Rightarrow\:sec\theta\:+\:tan\theta\:+\:sec\theta\:-\:tan\theta\:=\:p\:+\:\dfrac{1}{p}

\Rightarrow\:2sec\theta\:=\:p\:+\:\dfrac{1}{p}

\Rightarrow\:\:2tan\theta\:=\: \dfrac{ {p}^{2} \:  + \: 1 }{p} ____ (eq 3)

Now, subtract (eq 1) and (eq 2)

\Rightarrow\:sec\theta\:+\:tan\theta\:-\:sec\theta\:+\:tan\theta\:=\:p\:-\:\dfrac{1}{p}

\Rightarrow\:2tan\theta\:=\:p\:-\:\dfrac{1}{p}

\Rightarrow\:2tan\theta\:=\: \dfrac{ {p}^{2} \:  -  \: 1 }{p} _____ (eq 4)

Divide (eq 4) by (eq 3)

\Rightarrow \:  \dfrac{2tan \theta}{2sec \theta}  \:  =  \:  \dfrac{ \frac{ {p}^{2}  \:  -  \: 1}{p} }{ \frac{ {p}^{2}  \:   +   \: 1}{p} }

Now,

tanØ = sinØ/cosØ and secØ = 1/coØ

\Rightarrow \:  \dfrac{ \frac{sin \theta}{cos \theta} }{ \frac{1}{cos \theta} }  \:  =  \:  \dfrac{ \frac{ {p}^{2}  \:  -  \: 1}{p} }{ \frac{ {p}^{2}  \:   +   \: 1}{p} }

\Rightarrow\:sin\theta\:=\:\dfrac{ {p}^{2}  \:  -  \: 1}{ {p}^{2} \:  +  \: 1 }

Hence, proved.

Similar questions