if sec theta+ tan theta = p, show that p2-1/p2+1 = sin theta
Answers
Given : Sec Θ + tanΘ = p
To show : p² - 1 / p² + 1 = sin Θ
We have,
LHS = p² - 1 / p² + 1 = ( SecΘ + tanΘ )²-1 / ( Sec Θ + tanΘ )²+ 1
⇒ LHS = Sec²Θ + tan²Θ + 2 sec Θ tan Θ - 1 / sec²Θ + tan²Θ + 2
sec Θ tan Θ + 1
⇒ LHS = ( sec²Θ - 1 ) + tan²Θ + 2 sec Θ tan Θ / sec²Θ + 2 sec Θ
tan Θ + ( 1 + tan² Θ )
⇒ LHS = tan²Θ + tan²Θ + 2secΘtanΘ / sec²Θ + 2secΘtanΘ +
sec²Θ
⇒ LHS = 2 tan²Θ + 2tanΘsecΘ / 2sec²Θ + 2secΘtanΘ
⇒ LHS = 2tan Θ ( tan Θ + sec Θ ) / 2secΘ ( sec Θ + tan Θ )
⇒ LHS = tan Θ / sec Θ = sin Θ / cosΘ· secΘ
= sin Θ = RHS
HENCE PROVED...!!!
Answer:
Given : Sec Θ + tanΘ = p
To show : p² - 1 / p² + 1 = sin Θ
We have,
LHS = p² - 1 / p² + 1 = ( SecΘ + tanΘ )²-1 / ( Sec Θ + tanΘ )²+ 1
⇒ LHS = Sec²Θ + tan²Θ + 2 sec Θ tan Θ - 1 / sec²Θ + tan²Θ + 2
sec Θ tan Θ + 1
⇒ LHS = ( sec²Θ - 1 ) + tan²Θ + 2 sec Θ tan Θ / sec²Θ + 2 sec Θ
tan Θ + ( 1 + tan² Θ )
⇒ LHS = tan²Θ + tan²Θ + 2secΘtanΘ / sec²Θ + 2secΘtanΘ +
sec²Θ
⇒ LHS = 2 tan²Θ + 2tanΘsecΘ / 2sec²Θ + 2secΘtanΘ
⇒ LHS = 2tan Θ ( tan Θ + sec Θ ) / 2secΘ ( sec Θ + tan Θ )
⇒ LHS = tan Θ / sec Θ = sin Θ / cosΘ· secΘ