Math, asked by RdShelar7621, 1 year ago

If sec(theta) + tan(theta) = p, then find tha value of cosec(theta)

Answers

Answered by harshitha100
44
I HOPE THIS WILL HELP U
Attachments:
Answered by MavisRee
30

Answer:

Value of cosec Θ = \frac{p^{2}+1}{p^{2}-1}

Step-by-step explanation:

Given,

sec Θ + tan Θ = p   ( Let this be Eqn 1 )

Since we know,

sec² Θ - tan² Θ = 1

We can write it as,

(sec Θ + tan Θ ) ( sec Θ - tan Θ ) = 1

Substituting the value of sec Θ + tan Θ

p ( sec Θ - tan Θ ) = 1

sec Θ - tan Θ = 1 / p   (Let this be Eqn 2 )

Adding Eqn 1 and Eqn 2,

sec Θ + tan Θ + sec Θ - tan Θ  = p + 1 / p

2 sec Θ = p + \frac{1}{p}

2 sec Θ =  \frac{p^{2}+1}{p}

sec Θ = \frac{p^{2}+1}{2p}

We know,

cos Θ =  1 / sec Θ , that is,

1 / \frac{p^{2}+1}{2p}

cos Θ =  \frac{2p}{p^{2}+1}

Since,

sin Θ = √ 1 - cos² Θ

Substituting the value of cos Θ

sin Θ = \sqrt{1-(\frac{2p}{p^{2}+1})^{2} }

= \sqrt{1-\frac{4p^{2}}{(p^{2}+1)^{2}} }

= \sqrt{\frac{(p^{2}+1)^{2}-4p^{2}}{(p^{2}+1)^{2}} }

= \sqrt{\frac{p^{4}+1+2p^{2}-4p^{2}}{(p^{2}+1)^{2}} }

= \sqrt{\frac{p^{4}+1-2p^{2}}{(p^{2}+1)^{2}} }

= \sqrt{\frac{(p^{2}-1)^{2}}{(p^{2}+1)^{2}} }

= \frac{p^{2}-1}{p^{2}+1}

So,

sin Θ = \frac{p^{2}-1}{p^{2}+1}

Since,

cosec Θ = 1 /  sin Θ

cosec Θ = 1 / \frac{p^{2}-1}{p^{2}+1}

cosec Θ = \frac{p^{2}+1}{p^{2}-1}

Hence,

Value of cosec Θ = \frac{p^{2}+1}{p^{2}-1}



Similar questions