If sec theta + tan theta = p, then find the value of cosec theta.
Answers
Answer:
(p² + 1)/p² - 1
Step-by-step explanation:
Given: sec θ + tan θ = p ----- (i)
We know that sec²θ - tan²θ = 1
⇒ (secθ + tanθ)(secθ - tanθ) = 1
⇒ (p)(secθ - tanθ) = 1
⇒ secθ - tanθ = (1/p) ----- (ii)
On solving (i) & (ii), we get
⇒ secθ + tanθ + secθ - tanθ = p + 1/p
⇒ 2secθ = p² + 1/p
⇒ secθ = (p² + 1)/2p
⇒ cosθ = (1/secθ)
= 2p/p² + 1
Sin²θ = 1 - cos²θ
= 1 - (2p/p² + 1)²
= 1 - (4p²)/p⁴ + 1 + 2p²
= (p⁴ + 1 + 2p² - 4p²)/p⁴ + 1 + 2p
= (p⁴ + 1 - 2p²)/p⁴ + 1 + 2p
= (p² - 1)²/(p² + 1)²
sin θ= p² - 1/p² + 1.
Now,
We know that cosecθ = (1/sinθ)
⇒ (p² + 1)/p² - 1.
Hope it helps!
Answer......
Secθ+tanθ=p ----------------------(1)
∵, sec²θ-tan²θ=1
or, (secθ+tanθ)(secθ-tanθ)=1
or, secθ-tanθ=1/p ----------------(2)
Adding (1) and (2) we get,
2secθ=p+1/p
or, secθ=(p²+1)/2p
∴, cosθ=1/secθ=2p/(p²+1)
∴, sinθ=√(1-cos²θ)
=√[1-{2p/(p²+1)}²]
=√[1-4p²/(p²+1)²]
=√[{(p²+1)²-4p²}/(p²+1)²]
=√[(p⁴+2p²+1-4p²)/(p²+1)²]
=√(p⁴-2p²+1)/(p²+1)
=√(p²-1)²/(p²+1)
=(p²-1)/(p²+1)
∴, cosecθ=1/sinθ=1/[(p²-1)/(p²+1)]=(p²+1)/(p²-1)