Math, asked by vectors9702, 1 year ago

if sec theta + tan theta=x then prove that sin theta=x^2-1/x^2+1

Answers

Answered by priyudd
113
hope it helps you..
Attachments:

veer57: right
Answered by mysticd
66

Answer:

 Given \: sec\theta + tan\theta = x---(1)

Now, RHS =\frac{x^{2}-1}{x^{2}+1}

= \frac{(sec\theta+tan\theta)^{2}-1}{(sec\theta+tan\theta)^{2}+1}

=\frac{sec^{2}\theta+tan^{2}\theta+2sec\theta tan\theta-1}{sec^{2}\theta+tan^{2}\theta+2sec\theta tan\theta+1}

=\frac{(sec^{2}\theta-1)+tan^{2}\theta+2sec\theta tan\theta}{sec^{2}\theta+sec^{2}\theta-1+2sec\theta tan\theta+1}

=\frac{tan^{2}\theta+tan^{2}\theta+2sec\theta tan\theta}{2sec^{2}\theta+2sec\theta tan\theta}

=\frac{2tan^{2}\theta+2sec\theta tan\theta }{2sec\theta(sec\theta+tan\theta}

=\frac{2tan\theta(sec\theta+tan\theta)}{2sec\theta(sec\theta+tan\theta)}

=\frac{tan\theta}{sec\theta}

=\frac{\frac{sin\theta}{cos\theta}}{\frac{1}{cos\theta}}

=sin\theta

= LHS

•••♪

Similar questions